

SI is the abbrevation of "Systeme International d'Unites" This is the international system of units is based upon :

- seven base units as "length", "time", "temperature", "mass", etc
- two supplementary units
- derived units

Base units of SI

Base Unit	Name	Name	
Length	metre	m	
Mass	kilogram	kg	
Time	second	S	
Electric Current	ampere	Α	
Temperature	kelvin	K	
Luminous Intensity	candela	cd	
Amount of Substance	mole	mol	

Supplementary units of SI

Supplementary Units	Name	Name	Name	
Plane Angle	radian	rad		
Solid Angle	steradian	sr		

The derived units may be divided into three groups:

- units which are expressed in terms of base and supplementary units
- units which have been given special names and symbols
- units which are expressed in terms of other derived units

Some **derived units** expressed in terms of base and supplementary units.

Derived Unit	Name	Name
Acceleration	metre / second squared	m / s²
Angular Acceleration	radian / second squared	rad / s²
Area	square metre	m²
Density	kilogram / cubic metre	kg / m³
Kinematic Viscocity	square metre / second	m²/s
Mass Flow Rate	kilogram / second	kg/s
Molar Mass	kilogram / mole	kg / mol
Specific Volume	cubic metre / kilogram	m³ / kg
Velocity	metre / second	m/s
Volume	cubic metre	m³

INTERNATIONAL SYSTEM OF UNITS (SI)

Some derived units have special names and symbols.

Derived Units	Name	Symbol
Force	Newton	1 N = 1 kg.m / s
Pressure, Stress	Pascal	1 Pa = 1 N / m
Energy, Work, Quantity of Heat	Joule	1 J = 1 N.m
Power, Radiant Flux	Watt	1 W = 1 J / s
Electric Potential, Potential Differ-	Volt	1 V = 1 W / A
ence	Ohm	1 Ω = 1 V / A
Electrical Resistance		

Onwards are:

kilopascal (kPa) = 10^3 N / m^2 = kN / m^2 kilonewton (kN) = 10^3 kg.m / s^2 kilojoule (kJ) = 10^3 N.m = kN.m

Conversion Table

From the old (metre-kilogram-second-ampere) system to units of SI.

1 Bar	= 100 kPa (0.1 N / mm²)
1 Btu (British Thermal Unit)	= 1.055 kl = 1055 J
1 cP (Centipoise)	= 10 ⁻³ Pa.s
1 cSt. (Centistokes)	$= 10^{-6} \text{ m}^2 / \text{ s}$
1 dyne	= 1 g.cm / s ² = 10 N
1 erg	= 1 dyn.cm = 10 J
1 hp (Horsepower)	≈ 745.7 W
1 kcal	= 4.1868 kJ = 4186.8 J
1 kcal / h	= 1.163 W
Kelvin	≈ °C + 273
1 mbar (Milibar)	= 100 Pa
1 mmHg (Torr)	≈ 133.32 Pa
1 mwc	$\approx 9.81 \text{ kPa } (9.81 \text{ kN } / \text{ m}^2)$
1 pk (paardekracht NL)	≈ 735.5 W `
1 psi	$\approx 6.89 \text{ kPa } (6.89 \text{ kN.m}^2)$
1 kgf	≈ 9.81 N `
1 kgf / cm²	≈ 98.07 kPa

1 in	=	1 inch	=	25.4 x 10 ⁻³ m
1 ft	=	1 foot	=	0.3048 m
1 in ²	=	1 inch ²	=	0.64516 x 10 ⁻³ m ²
1 ft ²	=	1 foot ²		$= 0.0929 \text{ m}^2$
		1 lb	=	0.454 kg
		1 lb /h	≈	0.12599 x 10 ⁻³ kg / s
		1 in³	≈	16.387 x 10 ⁻⁶ m ³ (= 16.387 cm ³
		1 UK gal	≈	4.546 x 10 ⁻³ m ³ (= 4.546 dm ³)
		1 US gal	≈	3.785 x 10 ⁻³ m ³ (= 3.785 dm ³)